
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 482
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

A comparative study on the algorithms for data
privacy and security in cloud computing

Syed Shafaque Fatma, Meera Narvekar

Abstract— Cloud computing is a technology expected to redefine the advances in information technology. In data privacy protection and
retrieval- control is one of the most challenging research works in cloud computing. Cloud computing offers an innovative business model
for organizations with minimal investment. Security is one of the major issues which affect the growth of cloud. An important problem in this
environment is to protect the user privacy while querying the data from the cloud; to address this researcher have developed many
techniques, but the problem with those techniques is the heavy computational and bandwidth costs which are unacceptable to the users.
This paper gives an overview of some schemes which address the problem of bandwidth and computational costs.

Index Terms— cloud computing, user privacy, encryption, ADL, mask matrix.

—————————— ——————————

1 INTRODUCTION
Cloud computing is an emerging technology which is being used
widely these days. Due to the advantages of cloud computing,
e.g., cost-effectiveness, flexibility and scalability, more and more
organizations are now opting to outsource their data for sharing in
the cloud. In a cloud application, an organization subscribes the
cloud services and gives access to its staff to share files in the
cloud. Each file is described by some keywords, and the staff, as
authorized users, can retrieve files which they are interested in by
querying the cloud with those keywords. In such a scenario, pro-
tection of user privacy from the cloud, which is outside the securi-
ty boundary of the organization, becomes a key problem. User
privacy can be classified into search privacy and access privacy
[6]. Search privacy means that the cloud knows nothing about
what the user is searching for, and access privacy means that the
cloud knows nothing about which files are returned to the user.
When the files are stored in the clear forms, a naive solution to
protect user privacy is for the user to request all of the files from
the cloud; this way, the cloud cannot know which files the user is
really interested in. While this does provide the necessary privacy,
the communication cost is high.

2 RELATED WORK
For the private searching in the cloud many algorithms were
proposed. Private searching is proposed by [1], where the data
is stored in the clear form, and the query is encrypted with the
Paillier cryptosystem. The cloud stores all files into a compact
buffer, with which the user can successfully recover all want-
ed files with high probability. In the following work, [2] re-
duced the communication cost in [1] by solving a set of linear
programs; [7] presented an efficient decoding mechanism for
private searching. The main drawback of the current private
searching techniques is that both the computation and com-
munication costs grow linearly with the number of users that
are executing searches. Thus, when applying these schemes to
a large-scale cloud environment, querying costs will be exten-
sive. Ranked searchable encryption enables users to retrieve
the most matched files from the cloud in the case that both the
query and data are in the encrypted form. The work by [8],
which only supports single-keyword searches, encrypts files
and queries with Order Preserving Symmetric Encryption

(OPSE) [9] and utilizes keyword frequency to rank results.
Their following work [10], which supports multiple-keyword
searches, uses the secure KNN technique [11] to rank results
based on inner products. The main limitation of these ap-
proaches is that user access privacy [6] will not be preserved.
Let us now see the three algorithms in detail i.e. Ostrovsky
scheme, COPS protocol, EIRQ scheme. All these algorithms
address to the private searching in the cloud environment.

2.1 Ostrovsky scheme
A key privacy search solution was proposed by Ostrovsky et al.
[1], which can provide the same privacy level as downloading the
entire database from the cloud with significantly less communica-
tion costs. By asking the cloud to return the entire database, the
cloud cannot know which files are really interested by a user.
However, the Ostrovsky scheme has a high computation cost,
since it must require the cloud to process the encrypted query on
every file present in the database; Otherwise, the cloud will come
to know that certain files are not related to that user’s query.
Therefore, it will become a performance bottleneck when the
cloud needs to process thousands of files. Ostrovsky gave a
scheme based on the homomorphism of the Paillier cryptosystem
providing this capability. First, a public dictionary of keywords D
is fixed. To construct a query for the disjunction1 of some key-
words K is a subset of D, the user produces an array of cipher
texts, one for each w ∈ D. If w ∈ K, a one is encrypted; otherwise
a zero is encrypted. A server processing a document in its stream
may then compute the product of the query array entries corre-
sponding to the keywords found in the document. This will result
in the encryption of some value c, which, by the homomorphism,
is nonzero if and only if the document matches the query. The
server may then in turn compute E(c) f = E(cf), where f is the
content of the document, obtaining either an encryption of (a mul-
tiple of) the document or an encryption of zero. Ostrovsky and
Skeith propose the server keep a large array of cipher texts as a
buffer to accumulate matching documents; each E(cf) value is
multiplied into a number of random locations in the buffer. If the
document matches the query then c is nonzero and copies of that
document will be placed into these random locations; otherwise, c
= 0 and this step will add an encryption of 0 to each location, hav-
ing no effect on the corresponding plaintexts. A fundamental
property of their solution is that if two different matching docu-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 483
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

ments are ever added to the same buffer location, a collision will
result and both copies will be lost. If all copies of a particular
matching document are lost due to collisions then that document is
lost, and when the buffer is returned to the client, they will not be
able to recover it. To avoid the loss of data in this approach one
must make the buffer sufficiently large so that this event does not
happen. This requires that the buffer be much larger than the ex-
pected number of required documents. In particular, Ostrovsky
and Skeith show that a given probability of successfully obtaining
all matching documents may be obtained with a buffer of size
O(m log m)^2, where m is an upper bound on the number of
matching documents. While effective, this scheme results in inef-
ficiency due to the fact that a significant portion of the buffer re-
turned to the user consists of empty locations and document colli-
sions [2]. Let E(m) denote the encryption of plaintext m. The
Paillier cryptosystem has the following homomorphic properties:
E(a) • E(b) = E(a + b) and E(a)b = E(a • b) The Ostrovsky scheme
consists of three algorithms, as shown in Algorithm. We use a
simple example to illustrate its working process as follows: public
dictionary Dic = (A,B,C,D) and files stored in the cloud are as in
Table I; A user, Alice, wishes to retrieve files with keywords “A,
B”. In the first step, Alice runs the Generate Query algorithm to
generate a query Q = (E(1),E(1),E(0),E(0)), where each entry is an
encryption of 1 if the corresponding keyword is chosen; otherwise
it is 0. In the second step, the cloud runs the Private Search algo-
rithm to generate occurrence-content pairs. For example, user
keywords “A, B” appear in F1, both of which correspond to E(1)
in user query Q. Thus, the occurrence of the user keywords is the
product of corresponding entries in Q, i.e., c1 = E(1) • E(1) = E(1
+ 1) = E(2). File content is then powered by the occurrence, i.e.,
e1 = c|F1| 1 = E(2 • |F1|). Then, the cloud maps each pair many
times to a compact buffer format”. For each buffer entry, there are
three statuses: survival, collision, and mismatch, where a collision
will appear only when more than one matched file is mapped, a
survival will appear when only one matched file is mapped, and a
mismatch will appear when unmatched files are mapped. For ex-
ample, in Fig. 3, the second entry is a collision. When a collision
happens, no files in the entry can be recovered. In the third step,
Alice runs the File Recover algorithm to recover files. Note that if
a file is mismatching Q, then the occurrence is an encryption of 0,
and the file content is processed to be an encryption of 0. Other-
wise, the occurrence is an encryption of some value v larger than
0, and the file content is processed to be an encryption of v • |Fj |.
Therefore, the user can obtain file content by dividing the content
by the occurrence. This scheme also provides a collision-detection
mechanism to let the user get rid of the conflicting copies [2].

2.2 COPS protocol
The COPS (Cooperate private searching) protocol reduces the
communication and computational cost by introducing the
concept of aggregation and distribution layer (ADL). It is de-
ployed in the organization and it works between the users and
cloud. It combines the multiple user queries before sending it
to the cloud. This reduces the communication cost as the dif-
ferent users can ask for the same file and if that query is sent
twice then the cost incurred will be more. Hence, if the query
is combined then in one request the file can be retrieved. To
illustrate, let us assume that files F1, F2, and F3, which are
stored in the cloud, are described with keywords “A, B”, “B”,
and “C”, and Alice and Bob query data with “A, B” and “A,
C”, respectively. Under the ADL, the cloud needs to execute

the query only once to return F1, F2, and F3 to the ADL. Com-
pared to the Ostrovsky scheme, the computation and commu-
nication costs are saved by 50% and 25%, respectively. Note
that introducing the ADL will incur some processing delay for
aggregating queries. However, the degree of aggregation can
be controlled through a time-out mechanism to meet a given
processing delay requirement. When the time-out is set to ze-
ro, this is degraded to the normal sequential search [4].

2.3 EIRQ scheme
The basic idea of EIRQ (Efficient information retrieval using
ranked queries) is that a privacy-preserving mask matrix is
used to filter out a certain percentage of files before mapping
them to a buffer. Before illustrating EIQR, two fundamental
problems should be resolved: First, we should determine the
relationship between query rank and the percentage of re-
turned matched files. Suppose that queries are classified into r
ranks, where Rank-0 queries have the highest rank and Rank-r
queries have the lowest rank. In this paper, we simply deter-
mine this relationship by allowing Rank-i queries to retrieve
(1−i/r) percent of statuses matched files. Therefore, Rank-0
queries can retrieve 100% of the matched files, and Rank-r
queries cannot retrieve any files. Second, we should determine
which matched files will be returned and which will not. In
this paper, we simply determine the probability of a file being
returned by the highest rank of queries matching this file. Spe-
cifically, we first rank each keyword by the highest rank of
queries choosing it, and then rank each file by the highest rank
of its keywords. If the file rank is i, then the probability of be-
ing filtered out is i/r [4].EIRQ consists of four algorithms; we
will use the following example to describe its working process.
The dictionary and files are the same as in table II; users are
classified into four ranks, where Alice, a Rank-0 user, queries
with keywords “A, B”, and Bob, a Rank-1 user, uses keywords
“A, C”. According to our rules, “A, B” are Rank- 0 keywords,
“C” is a Rank-1 keyword, and “D” is a Rank-4 keyword. Cor-
respondingly, F1 and F2 are Rank-0 files which will be re-
turned with a probability of 1, F3 and F4 are Rank-1 files
which will be returned with a probability of 75%, and F5 is a
Rank-4 file which will not be returned. First each user runs the
Query Gen algorithm to send a query to the ADL, where the
user query consists of the chosen keywords and the query
rank. Given users’ queries, the ADL runs the Matrix- Con-
struct algorithm to send a mask matrix to the cloud. The mask
matrix M is a d-row and r-column matrix, where d is the
number of keywords in the dictionary, and r is the highest
rank of queries. The mask matrix M can be constructed as fol-
lows: For each keyword w, the ADL first sets w’s rank with l,
the highest query rank choosing this keyword. Then, for the
row corresponding to keyword w, the ADL sets the first r − l
columns to 1 and the last l columns to 0. Note that, the reason
for setting the first r − l columns, rather than random r − l col-
umns, to 1 is to ensure that, given any two files with rank l, the
probability of the product of the columns corresponding to file
keywords being 0 is l/r. Based on the mask matrix, the cloud
runs the File Filter algorithm to filter out the percentage of
matching files based on the user query rank and returns a un-
ion buffer to the ADL. The process is as follows: For each file

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 484
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fj , the cloud first multiplies the k-th columns that correspond
to Fj ’s keywords in the mask matrix to obtain cj , where k = j
mod r. Then, the cloud powers the file content to cj to obtain ej
and maps (ci, ei) to many entries of a union buffer as the Os-
trovsky scheme. Here, cj denotes the occurrence of ranked
keywords in file Fj. Thus, cj will be larger than 0, and file Fj
will be returned only when l + k ≤ r, where k = j mod r. The
ADL then runs the Result Divide algorithm to distribute files
to each user. The ADL first recovers all files that match user
queries as the File Recover algorithm in the Ostrovsky scheme.
Then, the ADL distributes appropriate files to each user based
on the user queries. To make sure that the ADL distributes
files correctly, we can require the cloud to attach file keywords
with the file content. Thus, the ADL can find out all of the files
that match each user’s query by executing keyword searches
[4].

3 COMPARISON
The following tables shows the comparison of the Ostrovsky
scheme, COPS protocol and EIRQ scheme with respect to var-
ious parameters such as security, computational and commu-
nicational cost.

4 CONCLUSION

Cloud computing is used for sharing and retrieving infor-
mation. However, while retrieving information from cloud
environment it is necessary to get desired information with
optimal communication and computation cost. In this paper,
we have analyzed various algorithms is which is used for effi-
cient information retrieval in cloud environment. We have
also shown the comparison of these algorithms which is useful
for better understanding of these algorithms in terms of differ-
ent parameters.

REFERENCES
[1] R. Ostrovsky and W. Skeith III, “Private searching on streaming da-

ta,” in Proc. of ACM CRYPTO, 2005.

[2] J. Bethencourt, D. Song, and B. Waters, “New techniques for private
stream searching,” ACM Transactions on Information and System
Security, 2009.

[3] Q. Liu, C. C. Tan, J. Wu, and G. Wang, “Cooperative private search-
ing in clouds” http://www.cis.temple.edu/ cctan/TR1.pdf, Tech.
Rep., 2011.9.

[4] Q. Liu, C. C. Tan, J. Wu, and G. Wang, “Efficient information retriev-
al for ranked queries in cost-effective cloud environments,” in Proc.
of IEEE INFOCOM, 2012.

[5] P. Mell and T. Grance, “The nist definition of cloud computing
(draft),” NIST Special Publication, 2011.

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient construc-
tions,” in Proc. of ACM CCS, 2006.

[7] G. Danezis and C. Diaz, “Improving the decoding efficiency of pri-
vate search,” in IACR Eprint archive number 024, 2006.

[8] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proc. of IEEE ICDCS, 2010

[9] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill, “Order-preserving
symmetric encryption,” Advances in Cryptology-EUROCRYPT,
2009.

[10] Lou, “Privacy-preserving multikeyword ranked search over encrypt-
ed cloud data,” in Proc. Of IEEE INFOCOM, 2011.

[11] W. Wong, D. Cheung, B. Kao, and N.Mamoulis, “Secure knn compu-
tation on encrypted databases,” in Proc. of ACM SIGMOD, 2009.

TABLE 1
COMPARISON

Schemes

Parameter

Security
Computational

cost Bandwidth cost

Otrovsky Yes No No

COPS

protocol
Yes Yes, to some

extent
Yes, to some

extent

EIRQ Yes Yes Yes

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related work
	2.1 Ostrovsky scheme
	2.2 COPS protocol
	2.3 EIRQ scheme

	3 comparison
	4 conclusion
	References

